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Abstract - With the continually increasing operating
speeds, the boundary between EM problems and
general circuit designs is narrowing rapidly. There is
a great demand for efficiently combining EM solu-
tions with general purpose circuit simulators such as
SPICE. In this paper we present a novel and a uni-
fied approach based on model-reduction techniques
to combine EM formulations such as FEM, directly
into general purpose circuit simulators. The method
is two to three order faster than the previously pub-
lished methods and is suitable for simulating large
number of electromagnetic devices in a general cir-
cuit environment consisting of lumped/distributed
circuit elements and nonlinear terminations.

I - Introduction

The trend in the microwave and VLSI industries
is to design faster circuits and to integrate many
functions in a single design. Consequently, designs
are made with higher operating speeds, sharper rise
times, shrinking device sizes and low power con-
sumption. These aspects are making the signal integ-
rity analysis a challenging task and are highlighting
the interconnect effects, such as ringing, signal delay,
distortion, reflections and crosstalk [1]. At very high
frequencies lumped and distributed interconnect
models based on quasi-TEM approximations will be-
come inaccurate and sophisticated full-wave EM
models which take into account all possible field
components and all boundary conditions will be re-
quired. This needs the simulation of large number of
interconnect EM models along with other lumped
linear and nonlinear components. Also on a parallel
front, there is a need for simulating lumped compo-
nents such as resistors, capacitors and inductors etc.
along with EM devices in a nonlinear environment.
Both the above mentioned issues which are currently
challenging the high-frequency circuit designs de-

mand an efficient technique for unified or global sim-
ulation of EM and lumped/distributed components.

There have been few attempts in the literature to
address the above issue. These approaches can be
classified into two categories. In the first category
time-domain global simulation is performed based
on the extension of FDTD techniques to include
lumped components [2], [3]. However, such an ap-
proach suffers in a general circuit environment con-
taining stiff systems due to numerical instability [4].
Approaches in the second category are based on the
steady state frequency-domain techniques such as
harmonic balance method [5]. However, extension of
this idea to obtain general transient solutions by di-
rectly coupling FEM equations with nonlinear cir-
cuits leads to a large set of differential equations,
solution of which will be prohibitively CPU expen-
sive. In addition, in many practical applications be-
cause of the intricate frequency dependence in FEM
equations (e.g. hybrid FEM/boundary integral sys-
tems)   [6], it may not be possible to combine them
directly with nonlinear differential equations. Hence
there is a need for an efficient and accurate technique
for global simulation of entire circuit comprising of
lumped, EM and nonlinear components.

In this paper, we describe a novel method to ad-
dress the global simulation of EM, lumped linear and
nonlinear components efficiently. The main contribu-
tions in the new technique are summarized below:

(1) The modified nodal analysis (MNA) [7] is
extended to include FEM formulations and a
new stencil for FEM analysed EM devices is
derived.

(2) An algorithm for model-reduction of linear por-
tion of the global ciruit is presented to reduce
the size of the problem under consideration.
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(3) A new minimum realization algorithm is devel-
oped to obtain a macromodel in terms of mini-
mal-order state-space representation from the
reduced-order description. Proposed algorithm
guarantees the number of extra states required
during macromodeling to be minimum while
retaining the accuracy.

II - Formulation of Circuit Equations

Consider a general nonlinear network  which
contains linear lumped components, EM components
and arbitrary linear subnetworks. The linear lumped
components may be described by equations in either
time-domain or frequency-domain, whereas the non-
linear components may only be described by time-
domain equations. The arbitrary linear subnetworks
may contain EM devices that are best described in
the frequency-domain. Let the linear subnetworks be
grouped into a single subnetwork . Without loss of
generality, the modified nodal admittance (MNA)
matrix [7] for the network  can be formulated as

(1)

where

•  is the vector of node voltage wave-
forms appended by independent voltage source cur-
rent, linear inductor current, nonlinear capacitor
charge and nonlinear inductor flux waveforms,

•  and  are constant
matrices describing the lumped memory and mem-
oryless elements of network , respectively,

•  is a constant vector with entries deter-
mined by the independent voltage and current
sources,

• is a function describing the nonlinear ele-
ments of the circuit,

• wi

th a maximum of one nonzero in each row or col-

umn, is a selector matrix that maps , the
vector of currents entering the linear subnetwork

, into the node space  of the network ,

is the total number of variables in the MNA.

The linear multi-terminal subnetwork  can be
characterized in the frequency-domain by its termi-
nal behavior. Without loss of generality, the terminal
relations for subnetwork  can be represented by fre-
quency-domain equations in the form (described in
section C)

(2)

where  is the complex frequency,   is the com-
plex frequency-domain admittance representation of
the subnetwork ,  is the vector of terminal
voltage nodes that connects subnetwork  to net-
work  and ; L denotes the
Laplace transform.

The difficulty in solving (1) and (2) simultaneous-
ly is due to the fact that they implicitly contain a mix-
ture of frequency- and time-domain representations.
This can be efficiently addressed using the following
three basic steps:

1) Using moment-matching techniques,
   in (2) is approximated by aq- pole lower-

order model.
2)  Usingq- pole lower-order model, aminimal-

order state-space representation in the time-domain
is derived.

3) The derived differential equations are solved
simultaneously with (1) using standard numerical
techniques or any general-purpose circuit simulators.

III - MNA formulation of linear subnet-
works containing EM models

In order to perform model-reduction on a linear
subnetwork comprising of lumped components and
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EM models as needed by step #1, MNA representa-
tion of the linear subnetwork  is required. This is
accomplished by extending the modified nodal anal-
ysis to include EM models and also by deriving a
generalized stencil for FEM based formulations. Be-
cause of space limitations only the final form of the
MNA is given below and is presented for the case of
network  containing a single linear network with a
single EM model.

(3)

where

•  are constant matrices determined
by lumped linear components of subnetwork ;

 is a constant vector with entries deter-
mined by independent voltage and current sources
of subnetwork ,

•  is the vector of Laplace-domain node
voltage waveforms appended by independent volt-
age source current, linear inductor current wave-
forms of linear subnetwork ,

•   is the vector containing Laplace-domain
terminal currents entering the EM based subnet-

work;   is the number of terminals in EM based
subnetwork,

•  is a vector of unknown field components from
FEM formulation of EM based subnetwork,

•  are matrices derived in terms of nodal/edge
based FEM elemental matrices of EM based sub-
network,

•  and  are binary incidence matrices that map

 into the node space  of subnetwork
 and  terminal voltages of EM subnetwork into

node space  of subnetwork , respectively,

•   is a  functional matrix which relates the
unknown filed components  to terminal volt-
ages   of EM based subnetwork,

•  are matrices obtained by incorporating
boundary conditions associated with the EM based
subnetwork.

IV - Time-domain Macromodel of
Through Model-Reduction

Generally, solution of equations represented by
(3) is highly CPU intensive. In addition, simulta-
neous solution of (1) and (2) requires time-domain
representation for . Application of model-re-
duction techniques such as complex frequency hop-
ping (CFH) [8] solves both these problems. Using (3)
a q- pole lower order model for  can be ob-
tained as:

(4)

Moments of FEM based components required in
model-reduction can be calculated as described by
[9].

Usingq- pole lower-order description (4) amini-
mal-order state-space representation in the time-do-
main is derived as

(5)

where   and   are the vector of  terminal cur-
rents and voltages of linear subnetwork . Gilbert’s
diagonal construction technique [10] is used to derive
a macromodel which guarantees a “minimal-order
state-space representation” for the multiport transfer
function represented by (4). The macromodel thus de-
rived is both controllable and observable.

The differential equations represented by the
macromodel (5) can now be combined with (1) mak-
ing use of the relation . Using stan-
dard nonlinear solvers, resulting unified set of
differential equations can be solved to yield accurate
global transient solutions for the entire nonlinear cir-
cuit [11].
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V - Computational Results

An example is given below (Fig. 2) to demon-
strate the merits of the proposed technique. The lin-
ear network contained a single high-speed
interconnect. To verify the accuracy of the proposed
global simulation technique, cross-sectional dimen-
sions of the interconnect are chosen such that they
are relatively small compared to the signal wave-
length. Under such an assumption a quasi-TEM ap-
proximation would be adequate for comparing  the
results. An EM analysis is carried on the interconnect
using FEM formulation and from the resulting stencil
a global circuit matrix (MNA) (3) is obtained. CFH is
applied on this MNA to obtain a reduced-order mod-
el, and subsequently a time-domain macromodel for
the entire linear network is derived. In Fig. 3   time
responses obtained using both the proposed tech-
nique (with FEM-based interconnect model) as well
as SPICE (with quasi-TEM interconnect model) are
given. As seen, they match within reasonable accura-
cy.

VI - Conclusions

 In this paper an efficient technique based on
model-reduction is presented for global simulation of
circuits containing EM devices, lumped linear and

nonlinear components. A generalized stencil for EM
devices with FEM formulation is derived for inclu-
sion in MNA analysis. Also a new minimum realiza-
tion algorithm is used for macromodel synthesis. The
proposed technique an provides an efficient means
for mixed frequency/time simulation.
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